Anesthetic Propofol Overdose Causes Vascular Hyperpermeability by Reducing Endothelial Glycocalyx and ATP Production

نویسندگان

  • Ming-Chung Lin
  • Chiou-Feng Lin
  • Chien-Feng Li
  • Ding-Ping Sun
  • Li-Yun Wang
  • Chung-Hsi Hsing
  • Joseph V. Moxon
چکیده

Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells

Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate bur...

متن کامل

Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability

Dengue is the most prevalent arboviral disease in humans and a major public health problem worldwide. Systemic plasma leakage, leading to hypovolemic shock and potentially fatal complications, is a critical determinant of dengue severity. Recently, we and others described a novel pathogenic effect of secreted dengue virus (DENV) non-structural protein 1 (NS1) in triggering hyperpermeability of ...

متن کامل

Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS...

متن کامل

Ulinastatin mediates protection against vascular hyperpermeability following hemorrhagic shock.

OBJECT Recent studies have suggested that intrinsic apoptotic signaling cascade is involved in endothelial barrier dysfunction following hemorrhagic shock (HS), which results in vascular hyperpermeability. Our previous study demonstrated that ulinastatin (UTI) inhibits oxidant-induced endothelial hyperpermeability and apoptotic signaling. In present study, we hypothesized that UTI would improve...

متن کامل

Structural Behavior of the Endothelial Glycocalyx Is Associated With Pathophysiologic Status in Septic Mice: An Integrated Approach to Analyzing the Behavior and Function of the Glycocalyx Using Both Electron and Fluorescence Intravital Microscopy.

BACKGROUND The endothelial surface layer (ESL) regulates vascular permeability to maintain fluid homeostasis. The glycocalyx (GCX), which has a complex and fragile ultrastructure, is an important component of the ESL. Abnormalities of the GCX have been hypothesized to trigger pathological hyperpermeability. Here, we report an integrated in vivo analysis of the morphological and functional prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015